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Foreword

This document aims at providing mathematical details for fundamental methods used
to solve dynamic programming problems. Three methods are covered: value function
iteration (VFI), envelope condition method (ECM), and policy function iteration (PFI).
For implementation in Julia, please refer to Sargent’s fantastic  website . This document
serves as a supplement to the website.
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1. Optimal Growth Model

In this capter, we introduce an optimal growth model. The model is going to be our
working example for VFI.
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Consider an agent who seeks to maximize his lifetime expected utility. The agent’s
problem is to choose his future path of consumption ct and capital stock kt+1, subject to
the constraint:

ct + kt+1 ≤ yt, (1.1)

where both ct and kt+1 are non-negative. yt is the agent’s income at time t, which follows
the law of motion:

yt = zt f (kt), zt
iid∼ ϕ, (1.2)

where zt is a random variable that follows a positively supported distribution ϕ. f (kt) is
the production function.

Assumption 1.1.
The production function f (kt) is continuous and increasing in kt.

The agent’s optimization problem is given by:

v(yt) = max
ct

E0

[
∞

∑
t=0

βtu(ct)

]
, (1.3)

subject to the constraints  Eq. (1.1) and  Eq. (1.2) , where β ∈ (0, 1) is the discount factor,
and u(ct) is the utility flow in each period. v(yt) is called the value function and yt is
called the state variable of v. We further take two assumptions on u(·) and v(·).

Assumption 1.2.
The utility function u(ct) is continuous and increasing in ct.

Note that by this assumption, the inequality in  Eq. (1.1) is replaced by an equality since
if ct + kt+1 is strictly less than yt, the agent can always increase ct to improve the utility.

Assumption 1.3.
The value function v(yt) is bounded.
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Note that we may also write value function as follows.

v(y0) = max
ct

E0

[
∞

∑
t=0

βtu(ct)

]

= max
ct

E0

[
u(c0) + β

∞

∑
t=1

βt−1u(ct)

]

= max
ct

u(c0) + βE0

[
∞

∑
t=0

βtu(ct+1)

]
= max

c0
u(c0) + βE0[v(y1)]

= max
c0

u(c0) + β
∫

v(z1 f (y0 − c0))ϕ(dz1).

(1.4)

The form is called the Bellman equation. It is a functional equation regarding v. Note
that the true value function would solve this functional equation. The Bellman equation
approach has a significant advantage compared to the traditional method of Lagrange
multiplier; the Bellman equation approach transforms an infinite horizon problem into
a two-period problem, and also deals with the uncertainty. However, there is a clear
drawback: How to find v?

2. Value Function Iteration

A popular method is value function iteration. To see why does the method work, we
begin by introducing some fundamental concepts in analysis.

Definition.
A metric space is a pair (X, d), where X is a set and d : X × X → R is a function that satisfies
the following properties:

(a) d(x, y) ≥ 0 for all x, y ∈ X; d(x, y) = 0 if and only if x = y.

(b) d(x, y) = d(y, x) for all x, y ∈ X.

(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

d is called a metric (distance) on X.

Definition.
A sequence {xn} in a metric space (X, d) is said to be converge to x ∈ X if for every ϵ > 0, there
exists N ∈ N such that d(xn, x) < ϵ for all n ≥ N.
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Definition.
A sequence {xn} in a metric space (X, d) is said to be Cauchy if for every ϵ > 0, there exists
N ∈ N such that d(xn, xm) < ϵ for all n, m ≥ N.

Definition.
A metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point
in X.
Remark.
Rn is a complete metric space under the Euclidean metric d(x, y) =

√
∑n

i=1(xi − yi)2.

Definition.
A normed space X is a vector space with scalar field R equipped with a norm ∥·∥, satisfying that

(a) ∥x∥ ≥ 0 for all x ∈ X; ∥x∥ = 0 if and only if x = 0.

(b) ∥ax∥ = |a| ∥x∥ for all a ∈ R and x ∈ X.

(c) ∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

Remark.
The scalar field R can be replaced by other fields, but for our purpose, we only consider R.

Remark.
The norm induces a metric d(x, y) = ∥x − y∥. In fact, the Euclidean norm ∥x∥ =

√
∑n

i=1 x2
i

induces the Euclidean metric. For this reason, a normed space is automatically a metric space and
the metric is defined by its norm.

Definition.
B(X) is the set of all real-valued bounded continuous functions defined on X.

Proposition 2.4.
B(X) is a complete metric space under the supremum norm ∥ f ∥ = sup

x∈X
| f (x)|.

Proof.
Let { fn} be a Cauchy sequence in B(X). For each x ∈ X, define f (x) = limn→∞ fn(x).

The limit exists since { fn(x)} is a Cauchy sequence in R. We claim that f ∈ B(X). First,
f is bounded since for each x ∈ X, there exists N such that | fn(x)− fm(x)| < ϵ for all
n, m ≥ N. Letting m = N and n → ∞ yields that | f (x)− fN(x)| ≤ ϵ. Hence, | f (x)| ≤
| fN(x)| + ϵ for all x ∈ X. Second, f is continuous since for each x ∈ X and ϵ > 0, we
may pick δ > 0 such that | fN(x)− fN(y)| < ϵ for all y ∈ X with d(x, y) < δ. Hence,
| f (x)− f (y)| ≤ | f (x)− fN(x)| + | fN(x)− fN(y)| + | fN(y)− f (y)| < 3ϵ for all y ∈ X
with d(x, y) < δ. Since ϵ is arbitrary, f is indeed continuous and hence f ∈ B(X). This
completes the proof.
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Definition.
An operator T : X → X is called a contraction if there exists α ∈ (0, 1) such that d(T(x), T(y)) ≤
αd(x, y) for all x, y ∈ X.

Theorem 2.5 (Contraction Mapping Theorem).
Let (X, d) be a complete metric space and T : X → X be a contraction mapping with contraction
factor α ∈ (0, 1). Then T has an unique fixed point x∗ ∈ X. That is, Tx∗ = x∗. Furthermore, for
any x0 ∈ X, the sequence {xn} defined by xn+1 = Txn converges to x∗.

Proof.
For each x0 ∈ X, we define xn = Tn(x0). Then

d(xn+1, xn) = d(Tn+1(x0), Tn(x0)) ≤ αnd(x1, x0) → 0 as n → ∞. (2.1)

Hence, {xn} is a Cauchy sequence. Since X is complete, {xn} converges to some x∗ ∈ X.
Next, suppose both x∗ and y∗ are fixed points of T. Then

d(x∗, y∗) = d(T(x∗), T(y∗)) ≤ αd(x∗, y∗) < d(x∗, y∗), (2.2)

posing a contradiction. Therefore, x∗ is unique.

Theorem 2.6 (Blackwell’s Theorem).
Suppose T : B(X) → B(X) satisfies the following properties:

(a) T is monotone, i.e., f ≤ g implies T f ≤ Tg.

(b) There exists α ∈ (0, 1) such that for any c ∈ R+, T( f + c) ≤ T f + αc.

Then T is a contraction.

Proof.
Suppose f , g ∈ B(X) and c ∈ R+ satisfy the conditions (a) and (b). Then notice that

g ≤ f + ∥ f − g∥ . (2.3)

Thus we have
Tg ≤ T( f + ∥ f − g∥) ≤ T f + α ∥ f − g∥ . (2.4)

Rearranging the terms and taking the norm yiels the desired result.

We now turn back to the Bellman equation.
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Definition.
The Bellman operator T : v 7→ Tv is defined by

Tv(y) = max
c

u(y) + β
∫

v(z f (y − c))ϕ(dz). (2.5)

Remark.
The solution to the Bellman equation is the fixed point of the Bellman operator T.

Corollary 2.8.
The Bellman operator T is a contraction.

Proof.
Left as an exercise.

Since B(X) is a complete metric space and T is a contraction operator on it, by the
contraction mapping theorem, T has an unique fixed point. This fixed point is the solution
to the Bellman equation. Also, the proof of the contraction mapping theorem reveals a
numerical algorithm to find the fixed point:

(a) Start with a guess v0 ∈ B(X).

(b) Apply the Bellman operator T to v0 to get v1 = Tv0.

(c) Compare v1 with v0. If they are close enough, stop; otherwise, set v0 = v1 and repeat
step 2.

The algorithm is called the value function iteration.
The value function iteration is one of the most popular methods to solve dynamic pro-

gramming problems. One may observe that in the finite-horizon case, the value function
iteration is equivalent to the backward induction.

3. Envelope Condition Method

In this section, we introduce the envelope condition method. We begin by adding a few
assumptions to the optimal growth model.

Assumption 3.1.
u(·), f (·) ∈ C∞ are both strictly concave.

Assumption 3.2.
u(0) = f (0) = 0.
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Assumption 3.3.
u(·), f (·) satisfies the Inada conditions:

lim
c→0

u′(c) = ∞, lim
c→∞

u′(c) = 0,

lim
k→0

f ′(k) = ∞, lim
k→∞

f ′(k) = 0.
(3.1)

Definition.
A function c∗ : R+ → R+ is called the optimal policy if

c∗(y) = arg max
c

u(c) + β
∫

v∗(z f (y − c))ϕ(dz), (3.2)

where v∗ is the value function.

Following this definition, several properties are derived.

Proposition 3.1.
c∗ satisfies the following:

(a) c∗ is unique.

(b) c∗ is continuous and strictly increasing.

(c) c∗(y) ∈ (0, y) for any y > 0.

(d) (v∗)′(y) = (u′ ◦ c∗)(y).

Proof.
(a), (b) and (c) are omitted. For (d), one may write

v∗(y) = max
k

u(y − k) + β
∫

v∗(z f (k))ϕ(dz). (3.3)

Differentiating with respect to y and evaluating at the maximum yields

(v∗)′(y) = u′(c∗(y)). (3.4)

Remark.
The last property is called the envelope condition.
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Now, by the first order condition, we have

u′(c∗(y)) = β
∫
(v∗)′(z f (y − c∗(y)))z f ′(y − c∗(y))ϕ(dz)

= β
∫
(u′ ◦ c∗)(z f (y − c∗(y)))z f ′(y − c∗(y))ϕ(dz).

(3.5)

Our goal is to find c∗ solving the above functional equation. We first define the set where
c∗ lies.

Definition.

Σ := {σ | σ : y 7→ σ(y) ∈ (0, y) is continuous, strictly increasing.} (3.6)

And an operator on it.

Definition.
K : Σ → Σ with Kσ defined by the solution c of the following functional equation:

u′(c) = β
∫
(u′ ◦ σ)(z f (y − c))z f ′(y − c)ϕ(dz). (3.7)

A careful reader may question whether K is well-defined. The following proposition
addresses this concern.

Proposition 3.3.
K is well-defined.

Proof.
To show that K is well-defined, we need to show that the functional equation has an

unique solution lying in Σ given any σ ∈ Σ.
First, observe that the left hand side of the equation is strictly decreasing in c with

the value approaching ∞ as c → 0 and approaching 0 as c → ∞. The right hand side
is strictly increasing in c with the value approaching 0 as c → 0 and approaching ∞ as
c → y. Hence, the equation has a solution by the intermediate value theorem. The strict
monotonicity further guarantees the uniqueness of the solution.

Next, we have to show that the solution lies in Σ. By previous discussion, the solution
is interior. Also, it is strictly increasing since given any c, the right hand side is strictly
decreasing in y, and hence the solution must be strictly increasing. The last piece is the
continuity. This is guaranteed by the continuity of u′, f , f ′ and σ.
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Having shown that K is well-defined, we are now in a position to examine the con-
vergence of the operator. The operator K has, in fact, a tight connection with the Bellman
operator T. We are going to see the connection by introducing the following mapping.

Definition.
Let F = {v : R+ → R+ | v(0) = 0, v′(y) > u′(y), v is strictly concave and differentiable.}. De-
fine φ : F → Σ with v 7→ φv = (u′)−1 ◦ v′.

Proposition 3.4.
φ is a bijection.

Proof.
We first check that φ is well-defined. By assumption, u′ is strictly decreasing and

continuous; u′ is thus a bijection and hence so is (u′)−1. Note that u′ maps (0, ∞) to (0, ∞),
and so does v′. Also, for every v ∈ F , v′ is strictly decreasing and continuous, which
implies that φv is strictly increasing and continuous with range (0, ∞). Furthermore,
since v′ > u′, φv(y) = ((u′)−1 ◦ v′)(y) < ((u′)−1 ◦ u′)(y) = y. It follows that σ := ϕv ∈ Σ.

Next, we show that φ is a bijection. Fix σ ∈ Σ, let

v(y) =
∫ y

0
u′(σ(x))dx ∈ F . (3.8)

Then φv = (u′)−1(u′(σ(y))) = σ(y). Thus φ is surjective. Besides, if φv = φw, then
(u′)−1 ◦ v′ = (u′)−1 ◦ w′ and thus v′ = w′. Since v(0) = w(0) = 0, v = w. Hence φ is
injective. This completes the proof.

Theorem 3.5.
The diagram

F F

Σ Σ

T

φ φ

K

commutes. That is, for any v ∈ F , φTv = Kφv.

Proof.
For any v ∈ F , by the envelope theorem, (Tv)′(y) = u′(σ(y)), where σ solves

u′(σ(y)) = β
∫
(u′ ◦ σ)(z f (y − σ(y)))z f ′(y − σ(y))ϕ(dz). (3.9)

This implies that
φTv = ((u′)−1 ◦ u′)(σ(y)) = σ. (3.10)
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On the other hand, Kφv(y) is the σ that solves

u′(σ(y)) = β
∫
(u′ ◦ (φv))(z f (y − σ(y)))z f ′(y − σ(y))ϕ(dz)

= β
∫
(u′ ◦ ((u′)−1 ◦ v′))(z f (y − σ(y)))z f ′(y − σ(y))ϕ(dz)

= β
∫

v′(z f (y − σ(y)))z f ′(y − σ(y))ϕ(dz).

(3.11)

The two σ coincide, and hence the diagram commutes.

Corollary 3.6.
The sequence of policies

{
σ, Kσ, K2σ, . . .

}
converges to the optimal policy c∗.

Proof.
With the above theorem, we may write Kn = φTn φ−1. Since T is a contraction, Tn φ−1σ

converges to the fixed point of T, which is v∗. Thus Knσ converges to c∗.

The above result not only shows the convergence of the operator K but also tells us
that the convergent rate is the same as the Bellman operator T.

However, in practice, the envelope condition method tends to be more efficient than
the value function iteration. One of the reason is that the curvature of the policy function
tends to be smaller than the value function. While using linear interpolation to approxi-
mate the value off the grid points, the error is smaller for the policy function.

Another important reason is that the envelope condition method is often combined
with the endogenous grid method. The computationally expensive part of the envelope
condition method is to solve the functional equation. This is because of the appearance
of c on both sides. The endogenous grid method solves this issue by putting grids on k
instead of y. By doing so, in every step, one only needs to evaluate the integral on the
right hand side and then apply the inverse of u′ to get the updated policy function, which
is much faster.

4. Policy Function Iteration

The last method we are going to introduce is the policy function iteration, also known as
the Howard’s policy improvement algorithm.
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Definition.
Given v, a policy σ is called v-greedy if

σ(y) = arg max
c∈(0,y)

u(c) + β
∫

v(z f (y − c))ϕ(dz). (4.1)

Our goal is to find the v∗-greedy policy. The algorithm is thus as follows:

1. Given an initial policy σ, solve the functional equation

vσ(y) = u(σ(y)) + β
∫

vσ(z f (y − σ(y)))ϕ(dz) (4.2)

to obtain vσ.

2. Update the policy to σ′ by

σ′(y) = arg max
c

u(c) + β
∫

vσ(z f (y − c))ϕ(dz). (4.3)

3. Use σ′ as the new initial policy and repeat step 1 and 2. Continue the process until
the convergence of σ and σ′ is attained.

Remark.
Let Tσ : v 7→ Tσv with

Tσv(y) = u(σ(y)) + β
∫

v(z f (y − σ(y)))ϕ(dz). (4.4)

Then Tσ is again clearly a contraction operator. One may solve  Eq. (4.2) by applying Tσ iteratively.

The convergence of the policy function iteration is guaranteed by the following theo-
rem.
Theorem 4.2.
Let σ be a policy, σ′ be the policy updated by a single step of the policy function iteration, and T
be the Bellman operator. Then vσ ≤ Tvσ ≤ vσ′ .

Proof.
By definition, Tvσ = Tσ′vσ. Also, vσ = Tσvσ ≤ Tvσ. Thus we have vσ ≤ Tvσ = Tσ′vσ.

Next, we claim that for n ≥ 1, vσ ≤ Tvσ ≤ Tn
σ′vσ. The case n = 1 has been proven.

Now suppose the claim holds for n. Then by applying Tσ′ to both sides of the inequality,
we have Tvσ ≤ Tn+1

σ′ vσ. By the monotonicity of T, we have vσ ≤ Tvσ ≤ Tn+1
σ′ vσ. By

induction, the claim holds for all n ∈ N. The theorem follows by taking n → ∞.

11



Corollary 4.3.
The policy function iteration converges to the optimal policy.

Proof.
Let {σk} be the sequence of policies generated by the policy function iteration. One

may see the convergence by noticing that

Tkvσ0 ≤ vσk ≤ v∗. (4.5)

Thus
∥vσk − v∗∥ ≤

∥∥∥Tkvσ0 − v∗
∥∥∥ . (4.6)

By our previous discussion, the right hand side converges to 0 as k → ∞. vσk thus con-
verges to v∗. The optimal policy is then the limit of σk.

5. Future Methods

The above methods are the fundamental methods in solving dynamic problems in eco-
nomics. However, they all have a common disadvantage. That is, they all suffer from the
curse of dimensionality. In application, one needs to evaluate the value function on every
grid point, which is computationally expensive. For example, if one has a n-dimensional
state space and each dimension is gridded with m points, then the total number of grid
points is mn. This means that for a single iteration, one needs to evaluate the value or
policy on mn points. Recently, there are some papers that try to solve the curse of dimen-
sionality by randomness. The main idea is to draw the points randomly in an area in the
state space and then simulate the value or policy on these points. For example, one may
refer to  Maliar, Maliar, and Winant ( 2021 ).
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